US009244632B1

a2z United States Patent (10) Patent No.: US 9,244,632 B1
Foley et al. 45) Date of Patent: Jan. 26, 2016
(54) DATA STORAGE SYSTEM CONFIGURATION (56) References Cited
(71) Applicant: EMC Corporation, Hopkinton, MA U.S. PATENT DOCUMENTS
US
US) 8,250,257 Bl 8/2012 Harel et al.
(72) Inventors: Robert P. Foley, Clinton, MA (US); 8375385 Bl 22013 Harel etal.
Peter Puhov, Shrewsbury, MA (US);
Mare C. Cassano, Medway, MA (US); OTHER PUBLICATIONS
Ronald D. Proulx, Boxborough, MA U.S. Appl. No. 13/737,295, filed Jan. 9, 2013, Harel, et al.
823 Daniel E. Cummins, Hudson, NH (7.5 Appl. No. 13/923,427, filed Jun. 21, 2013, Foley, et al.
(73) Assignee: EMC Corporation, Hopkinton, MA Primary Examiner — Yong Choe
(US) Assistant Examiner — Shane Woolwine
(74) Attorney, Agent, or Firm — Muirhead and Saturnelli,
(*) Notice: Subject to any disclaimer, the term of this LLC
patent is extended or adjusted under 35
U.S.C. 154(b) by 383 days. (57) ABSTRACT
(21) Appl. No.: 13/929,070 Described are techniques for booting a data storage system. A
. first set of configuration and state information is read from
(22)  Filed: Jun. 27, 2013 first storage devices of a first RAID group using special
51y Int. Cl processing code and a RAID library. A first set of system
GD Gll0;$F 1 200 (2006.01) objects (of a system object topology) are instantiated using
GO6F 13/00 (2006.01) the first set of information. The first set of system objects
GO6F 1328 (2006.01) represent storage entities containing a second set of configu-
GOG6F 3/06 (2006:01) ration and state information. Using an /O runtime stack
(52) US.Cl based on the system object topology, the second set of infor-
CPC ........ GOGF 3/0689 (2013.01); GOGF 3/0614 mation is read from second storage devices of a second RAID
(2013.01); GOGF 3/0638 (2613.01). GOG6F group using the same RAID library having calls made from
3/0653 (2613.01); GO6F 3/0683 (2613.01) method(s) of a RAID group object representing the second
(58) Field of Classification Search RAID group. A second set of client objects, instantiated using

CPC ... GO6F 3/0689; GOGF 3/0614; GOG6F 3/0638;
GOG6F 3/0683; GOGF 3/0644; GOGF 3/0653
711/111, 114, 115, 116; 713/1, 2, 100;
710/38

See application file for complete search history.

USPC

the second set of information, represent storage entities
including client data stored on third storage devices of a third
RAID group.

20 Claims, 10 Drawing Sheets

25@/_\ ost /O
252
/ \ Host
UN1 LUN 2 }g"j 3 Visible
254a
Ao S .
DMO O/;A(ID GROUP 1 RAID GROUP
270 o 256b PVO's
258c

PVO 1 PVO 2 )
25% 258b PVO 32580~ Logical
B oo ===

Physical




US 9,244,632 B1

Sheet 1 of 10

Jan. 26, 2016

U.S. Patent

[ d40DId
U JIOAIDS/1ISOH C IPAISS/1ISOH | JOAIDS/ISOH
Ne
J:l aril
/ 81
91 ugr [ | 9¢€l eel
WoISAS N
JUoWag ULy / 74
qLT BLT
N1

woIsAG 238101§ Bl

Aol



US 9,244,632 B1

Sheet 2 of 10

Jan. 26, 2016

U.S. Patent

cHddNOIA
T€ SUOIOUUOD JSOH
_ _ |
I I I
1ydepe 1ydepe 1mdepe
1S0H 1S0H 1S0H
i
\uiz \are \ore
N O
LT
($)10852001g

..... o3rimg Arowow Teqoin [0 "

9¢
\usz \est

— 0¢

1depe depe depe

s ISt I8t

o! : ®
\ ucz N aez \ ecc
1odepy [
..... 10t12Y])
Vi
\or :
- - - BpT
KQON ¢ qrC c
BOT

T




US 9,244,632 B1

Sheet 3 of 10

Jan. 26, 2016

U.S. Patent

¢ TANOIA
8CT 9Tt 7T
OOTWOD J 0—_O‘Hw:OU J10 |, < HOHP—N
a8e101g [* 1depy — by
1 rel pud yuo1g
bl oqor)

AN

071 WIsAS 93r1018 BIR(]

Pl qouovaoo

T
vdH

orT
150H

X001



US 9,244,632 B1

Sheet 4 of 10

Jan. 26, 2016

U.S. Patent

¥ HdNDIA

[eo1s£yg @
309¢
c£0dd

[eo180T
86T

¢ OAd 952

"z dNOYD AIvd

SIAEA €NN'T é
1504

44
O/1180

q09¢
c0d

q8¢e
¢ OAd

'09C
I 0dd

Xwst



US 9,244,632 B1

Sheet 5 of 10

Jan. 26, 2016

U.S. Patent

0T¢ Areiqry
SIOTAISG

S HANDIA

~— 0l¢

X__00¢



US 9,244,632 B1

Sheet 6 of 10

Jan. 26, 2016

U.S. Patent

9 4dNDIA

0T sennue
93e1038 JUDLD/IS ) 01+ SOUNUS 98RI0JS ARALLJ/UIDISAG

I \

\\\\}/\\ \\\JJ

— Bp0Y (%

£90¥ $102[q0 JUST[d/108N '$102[q0 S1eALId/TuISAS

PIED JUSTO/ 198 10} UOHBWIOLUL 2)E]S pue 10} UOHBWLIOJU 2JE)S PUE
uoneIN3uod JO 138 Puoddg uoneIN3yuod Jo 138 1811

C

9

O
)
p=d

TOTeWIOJUL
218} pur uoneINIHuod | “UOLBULIOIUT
30108 puodds peoy | €S 91e1S puR UONRINSLJUOO
J0 108 1811J peay
"$192(q0 IS
. JUS1]9/198N JOJ UOIEWLIOJUL )BIS
Surpnyour sennuo .omﬁoﬁ PuE uOnEINFLu0d BUIUIEIU0D
’ RN sonnud 0821018 1AL /UISAS
JUDI9/108N 10T §190[q0 Ju2T[o/1081 o1 S150(00 SreALId TIaISAS
CZIENIUT 0} UOLIILIONI 97838 oz1 % :a: mn_:owm&go\,% w ©)S
[pue UOTJRINSIJUOD JO )3 PUOIAS 3S() HERI o) uon Ut orE)
: pue uoneIn3IFuos Jo 108 JSIIJ S
~ . X oor

v s



US 9,244,632 B1

Sheet 7 of 10

Jan. 26, 2016

U.S. Patent

V9 TdNHDIA
Piry 3ThY
adad Ddad
qcry Créaa
q4dad vdad
POYY 3
OFy

P8¢

¥ OAd 08¢k € OAd 90t .-

¢ 0dd \\ [ 0ad

oty 1 (DY) L/

ISt Arraqry dNOdHD 0StH 9poo Iey
avd arvd TSy Areaqr | Surssoooad
arvd Tetoadg

arey
gNNT

(494 F \

, o) ] N ooy Verpp
,F:uv
X_ogp



US 9,244,632 B1

Sheet 8 of 10

Jan. 26, 2016

U.S. Patent

980§ UONEIO] 128Ie],

q80S DY Ut s d JO 93e3s JuaIny)

BR()S 15onbo1 O/ Jo 2dLAT,

sos

990§ UONPULIOIUL I9TI()

q90¢ 1oA91 dIVY 10 Jeulog

BY0S sAd JO 81

oo

L NI

}0S IMonns O/

20$ Andwodn arvy

X - 00S



US 9,244,632 B1

Sheet 9 of 10

Jan. 26, 2016

U.S. Patent

8 TINOId
00T 001
019 uoyedo)
PIBE——3 ST €———f————- B Uy ——0¢
L09 909 € NN'T
101 I
001 09 001
709 VNN'T
I \ !

709 2ords ssaippe 01307 (DY) dnoin qIvy

i N\ A

809 vd1DA

X009



US 9,244,632 B1

Sheet 10 of 10

Jan. 26, 2016

U.S. Patent

6 24N D14

‘907 do)s u1 pareniursul §)02[qo apnjour Aew yotym AFo[odoy 100[qo JudI[d/108Nn o) UO PIseq
orls SwnuNI (/] Ue pue AIeIqI] (VY oY1 SUISTL §150nbax (/] WWATJO/I08N §53001d N

%

01L

‘Burssaooxd /1 10J Are1ql] Qv o (01 S[[ed swaogiad “§0)
yum saoegul 1eyl A3oj0dog 109[qo 19sn/3U21]0 © UL PAPOUL 2q ABW 5109[q0 JUIL[D/19SN Yong
“BIEP JUAID/12sN SUTUIBIUOD $ANUD dFeI03s Juaro1asn Junuasaxdar s10a(qo ajenueisuy

«

N\ g0L

N

‘10, deis u1 parenyurisul s)oalqo Surpnjour A5o010doy 100lqo
WRJSAS DU} UO PISE] JIBIS AWIUNL ()/] Ue pue L1eiql] (v 2yl Suisn paunioprod s peal
oYL "$109[qo 03e10)$ JUDIO/I0SN 1OJ UOLBWLIOJUT O))S PUE UONBINSIJUQD JO 0§ PUOIDS PBIY N\

“Burssaooxd O/
10J AIeIQI TV @3 (03 sTeo suojrad < §:0) yum soorjigul jey) £3010doy 102[qo wd)sAs & ur papnoul
2q Arw §309[qo a1eALId/WRISAS 2y ], *$102[qO JUII[D/IASN 10} UOBUWLIOFUL 2)BIS PUB UOEINSLJU0d

90L

JO 198 pu00as uIureIuod sanyus a3e10ys jeaLid/weisAs Jurpuasaidar §300(qo syenueIsul [N p(/

Areiqi ATy ou
Fuisn $192[qo 251038 9)rALIA/UIISAS 10] UONIRULIOJUL 9)R]S PUR UONRINSLIUOD JO 108 ISIJ proy
[4

0L

X__ooL



US 9,244,632 B1

1
DATA STORAGE SYSTEM CONFIGURATION

BACKGROUND

1. Technical Field

This application generally relates to techniques for use in
data storage system configuration.

2. Description of Related Art

Computer systems may include different resources used by
one or more host processors. Resources and host processors
in a computer system may be interconnected by one or more
communication connections. These resources may include,
for example, data storage systems such as those included in
the data storage systems manufactured by EMC Corporation.
These data storage systems may be coupled to one or more
host processors and provide storage services to each host
processor. Multiple data storage systems from one or more
different vendors may be connected and may provide com-
mon data storage for one or more host processors in a com-
puter system.

A host processor may perform a variety of data processing
tasks and operations using the data storage system. For
example, a host processor may perform basic system [/O
operations in connection with data requests, such as data read
and write operations.

Host processor systems may store and retrieve data using a
storage system containing a plurality of host interface units,
disk drives, and disk interface units. Such storage systems are
provided, for example, by EMC Corporation of Hopkinton,
Mass. The host systems access the storage system through a
plurality of channels provided therewith. Host systems pro-
vide data and access control information through the channels
to the storage system and the storage system provides data to
the host systems also through the channels. The host systems
do not address the disk drives of the storage system directly,
but rather, access what appears to the host systems as a plu-
rality of logical disk units, logical devices, or logical volumes
(LVs). The logical disk units may or may not correspond to
the actual disk drives. Allowing multiple host systems to
access the storage system allows the host systems to share
data stored therein.

SUMMARY OF THE INVENTION

In accordance with one aspect of the invention is a method
of booting a data storage system comprising: reading a first
set of configuration and state information from a first set of
one or more storage devices, said first set of one or more
storage devices being included in a first RAID group, wherein
said reading the first set of configuration and state informa-
tion includes performing a first set of one or more calls to a
first code portion with a first set of one or more parameters
including information describing the first RAID group and a
first target location of the first set of configuration and state
information; instantiating a first set of system objects using
the first set of configuration and state information, the first set
of system objects representing physical and logical storage
entities including a second set of configuration and state
information whereby the first set of system objects are
included a system object topology; reading, using an 1/O
runtime stack based on the system object topology, the second
set of configuration and state information from a second set of
one or more storage devices included in a second RAID
group, wherein said reading the second set of configuration
and state information includes performing a second set of one
or more calls to the first code portion with a second set of one
or more parameters including information describing the sec-

10

15

20

25

30

35

40

45

50

55

60

65

2

ond RAID group and a second target location of the second
set of configuration and state information; and instantiating a
second set of client objects using the second set of configu-
ration and state information, the second set of client objects
representing physical and logical entities including client
data stored on a third set of one or more storage devices
included in a third RAID group, wherein the second set of
client objects are included a client object topology. Reading
the first set of configuration and state information may be
performed using a second code portion that issues the first set
of one or more calls to the first code portion, wherein the
second code portion may create and initialize a first structure
included as a first parameter of the first set of parameters. The
first structure may describe a RAID geometry of the first
RAID group. The first structure may include a list identifying
the first set of one or more storage devices as being included
in the first RAID group, and a RAID protection level of the
first RAID group. The second code portion may create and
initialize a second structure included as a second parameter of
the first set of parameters. The second structure may describe
a first read operation to read the first set of configuration and
state information from the first RAID group. The second
structure may include information that identifies an 1/O
operation type of read and identifies the first target location.
Reading the second set of configuration and state information
may include a method of a RAID group object in the system
object topology performing the second set of one or more
calls to the first code portion, wherein the RAID group object
may represent the second RAID group in the system object
topology. The RAID group object may include a set of
attributes describing the second RAID group, wherein the
second set of parameters may be specified using the set of
attributes from the RAID group object, and wherein a method
of the RAID group object may receive as one or more input
parameters a read I/O operation request to read the second set
of configuration and state information at the second target
location. The read I/O operation request may be received
from one or more higher level objects in an object hierarchy
including the RAID group object. The second set of param-
eters may include a first structure describing a RAID geom-
etry of the second RAID group. The first structure may
include a listidentifying the second set of one or more storage
devices as being included in the second RAID group, and a
RAID protection level of the second RAID group. The
method may include receiving a first I/O operation from a
client; and processing the first I/O operation using an 1/O
runtime stack based on the client object topology, wherein
said processing the first /O operation includes performing a
third set of one or more calls to the first code portion with a
third set of one or more parameters including information
describing the third RAID group and a third target location
identifying a location from which data is read or a location to
which data is written in accordance with the first I/O opera-
tion. Processing the first I/O operation may include a method
of'a RAID group object in the client object topology perform-
ing the third set of one or more calls to the first code portion,
wherein the RAID group object may represent the third RAID
group in the client object topology. The RAID group object
may include a set of attributes describing the third RAID
group, wherein the third set of parameters may be specified
using the set of attributes from the RAID group object, and
wherein a method of the RAID group object may receive as
one or more input parameters an I/O operation request for the
third I/O operation. The input parameters may identify a type
of'the I/O operation request as a read or a write operation and
may also identify the location from which data is read or to
which data is written in accordance with the type. The I/O



US 9,244,632 B1

3

operation request may be received from one or more higher
level objects in an object hierarchy including the RAID group
object. The third set of parameters may include a first struc-
ture describing a RAID geometry of the third RAID group.
The first structure may include a list identifying the third set
of one or more storage devices as being included in the third
RAID group, and a RAID protection level of the third RAID
group.

In accordance with another aspect of the invention is a
computer readable medium comprising code stored thereon
for booting a data storage system, the computer readable
medium comprising code for: reading a first set of configu-
ration and state information from a first set of one or more
storage devices, said first set of one or more storage devices
being included in a first RAID group, wherein said reading
the first set of configuration and state information includes
performing a first set of one or more calls to a first code
portion with a first set of one or more parameters including
information describing the first RAID group and a first target
location of the first set of configuration and state information;
instantiating a first set of system objects using the first set of
configuration and state information, the first set of system
objects representing physical and logical storage entities
including a second set of configuration and state information
whereby the first set of system objects are included a system
object topology; reading, using an I/O runtime stack based on
the system object topology, the second set of configuration
and state information from a second set of one or more storage
devices included in a second RAID group, wherein said read-
ing the second set of configuration and state information
includes performing a second set of one or more calls to the
first code portion with a second set of one or more parameters
including information describing the second RAID group and
a second target location of the second set of configuration and
state information; and instantiating a second set of client
objects using the second set of configuration and state infor-
mation, the second set of client objects representing physical
and logical entities including client data stored on a third set
of one or more storage devices included in a third RAID
group, wherein the second set of client objects are included a
client object topology. Reading the first set of configuration
and state information may be performed using a second code
portion that issues the first set of one or more calls to the first
code portion, wherein the second code portion may create and
initialize a first structure included as a first parameter of the
first set of parameters. The first structure may described a
RAID geometry of the first RAID group. The first structure
may include a list identifying the first set of one or more
storage devices as being included in the first RAID group, and
a RAID protection level of the first RAID group.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken in conjunction
with the accompanying drawings in which:

FIG. 1 is an example of an embodiment of a system that
may utilize the techniques described herein;

FIG. 2 is an example illustrating details of a data storage
system in accordance with techniques herein;

FIG. 3 is an example illustrating a request that may be
issued from a host to the data storage system in an embodi-
ment in accordance with techniques herein;

FIGS. 4, 6 and 6A are examples illustrating objects as may
be included in an object model or topology in an embodiment
in accordance with techniques herein;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 is an example illustrating a topology of objects and
additionally a services library in an embodiment in accor-
dance with techniques herein;

FIG. 6 is an example illustrating steps and associated data
flow that may be performed in an embodiment in accordance
with techniques herein;

FIG. 7 is an example illustrating parameters passed to a
RAID library API (application programming interface) call
that may be performed in an embodiment in accordance with
techniques herein;

FIG. 8 is an example illustrating LUN to RG logical
address space mapping that may be used in an embodiment in
accordance with techniques herein; and

FIG. 9 is a flowchart of processing steps that may be per-
formed in an embodiment in accordance with techniques
herein

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Referring to FIG. 1, shown is an example of an embodi-
ment of a system that may be used in connection with per-
forming the techniques described herein. The system 10
includes one or more data storage systems 12 connected to
server or host systems 14a-14n through communication
medium 18. The system 10 also includes a management sys-
tem 16 connected to one or more data storage systems 12
through communication medium 2. In this embodiment of the
system 10, the management system 16, and the N servers or
hosts 14a-14r may access the data storage systems 12, for
example, in performing input/output (I/O) operations, data
requests, and other operations. The communication medium
18 may be any one or more of a variety of networks or other
type of communication connections as known to those skilled
in the art. Each of the communication mediums 18 and 2 may
be a network connection, bus, and/or other type of data link,
such as a hardwire or other connections known in the art. For
example, the communication medium 18 may be the Internet,
an intranet, network or other wireless or other hardwired
connection(s) by which the host systems 14a-14» may access
and communicate with the data storage systems 12, and may
also communicate with other components (not shown) that
may be included in the computer system 10. In one embodi-
ment, the communication medium 2 may be a LAN connec-
tion and the communication medium 18 may be an iSCSI or
Fibre Channel connection.

Each of the host systems 14a-14» and the data storage
systems 12 included in the system 10 may be connected to the
communication medium 18 by any one of a variety of con-
nections as may be provided and supported in accordance
with the type of communication medium 18. Similarly, the
management system 16 may be connected to the communi-
cation medium 2 by any one of variety of connections in
accordance with the type of communication medium 2. The
processors included in the host computer systems 14a-14n
and management system 16 may be any one of a variety of
proprietary or commercially available single or multi-proces-
sor system, such as an Intel-based processor, or other type of
commercially available processor able to support traffic in
accordance with each particular embodiment and application.

It should be noted that the particular examples of the hard-
ware and software that may be included in the data storage
systems 12 are described herein in more detail, and may vary
with each particular embodiment. Each of the host computers
14a-14n, the management system 16 and data storage sys-
tems may all be located at the same physical site, or, alterna-
tively, may also be located in different physical locations. In



US 9,244,632 B1

5

connection with communication mediums 18 and 2, a variety
of different communication protocols may be used such as
SCSI, Fibre Channel, iSCSI, and the like. Some or all of the
connections by which the hosts, management system, and
data storage system may be connected to their respective
communication medium may pass through other communi-
cation devices, such as switching equipment that may exist
such as a phone line, a repeater, a multiplexer or even a
satellite. In one embodiment, the hosts may communicate
with the data storage systems over an iSCSI or a Fibre Chan-
nel connection and the management system may communi-
cate with the data storage systems over a separate network
connection using TCP/IP. It should be noted that although
FIG. 1 illustrates communications between the hosts and data
storage systems being over a first connection, and communi-
cations between the management system and the data storage
systems being over a second different connection, an embodi-
ment may also use the same connection. The particular type
and number of connections may vary in accordance with
particulars of each embodiment.

Each of the host computer systems may perform different
types of data operations in accordance with different types of
tasks. In the embodiment of FIG. 1, any one of the host
computers 14a-14n may issue a data request to the data stor-
age systems 12 to perform a data operation. For example, an
application executing on one of the host computers 14a-14n
may perform a read or write operation resulting in one or
more data requests to the data storage systems 12.

The management system 16 may be used in connection
with management of the data storage systems 12. The man-
agement system 16 may include hardware and/or software
components. The management system 16 may include one or
more computer processors connected to one or more 1/O
devices such as, for example, a display or other output device,
and an input device such as, for example, a keyboard, mouse,
and the like. A data storage system manager may, for
example, view information about a current storage volume
configuration on a display device of the management system
16, provision data storage system resources, and the like.

In one embodiment, the data storage systems 12 may
include one or more data storage systems such as one or more
of the data storage systems, such as data storage arrays,
offered by EMC Corporation of Hopkinton, Mass. Each of the
data storage systems may include one or more data storage
devices 13a-13n, such as disks. One or more data storage
systems may be manufactured by one or more different ven-
dors. Each of the data storage systems included in 12 may be
inter-connected (not shown). Additionally, the data storage
systems may also be connected to the host systems through
any one or more communication connections that may vary
with each particular embodiment and device in accordance
with the different protocols used in a particular embodiment.
The type of communication connection used may vary with
certain system parameters and requirements, such as those
related to bandwidth and throughput required in accordance
with a rate of I/O requests as may be issued by the host
computer systems, for example, to the data storage systems
12. It should be noted that each of the data storage systems
may operate stand-alone, or may also be included as part of a
storage area network (SAN) that includes, for example, other
components such as other data storage systems. Each of the
data storage systems may include a plurality of disk devices
or volumes 13a-13%. The particular data storage systems and
examples as described herein for purposes of illustration
should not be construed as a limitation. Other types of com-
mercially available data storage systems, as well as proces-

10

15

20

25

30

35

40

45

50

55

60

65

6

sors and hardware controlling access to these particular
devices, may also be included in an embodiment.

In such an embodiment in which element 12 of FIG. 1 is
implemented using one or more data storage systems, each of
the data storage systems and management system 16 may
include code thereon for performing the techniques as
described herein.

Servers or host systems, such as 14a-14n, provide data and
access control information through channels to the storage
systems, and the storage systems may also provide data to the
host systems also through the channels. The host systems may
not address the disk drives of the storage systems directly, but
rather access to data may be provided to one or more host
systems from what the host systems view as a plurality of
logical devices or logical volumes (LVs). The LVs may or
may not correspond to the actual disk drives. For example,
one or more Vs may reside on a single physical disk drive.
Data in a single storage system may be accessed by multiple
hosts allowing the hosts to share the data residing therein. An
LV or LUN (logical unit number) may be used to refer to the
foregoing logically defined devices or volumes.

For purposes of illustration, the techniques herein may be
described with respect to a single unitary data storage system,
such as single data storage array, including two storage pro-
cessors or computer processing units. Techniques herein may
be more generally use in connection with any one or more
data storage system each including a different number of
storage processors than as illustrated herein. The data storage
system 12 may be a data storage array, such asa CLARiiON®
data storage array or a VNX® data storage array by EMC
Corporation of Hopkinton, Mass., including a plurality of
data storage devices 16a-167 and two storage processors 17a,
17b. The storage processors (SPs) 174, 176 may be computer
processing units included in the data storage system for pro-
cessing requests and commands. In connection with perform-
ing techniques herein, an embodiment of the data storage
system may include multiple storage processors including
more than two storage processors or main CPUs as described.
The CLARiION® data storage system and the VNX® data
storage systems mentioned above may each include two stor-
age processors 17a, 17b for performing processing in con-
nection with servicing requests. Additionally, the two storage
processors 17a, 175 may be used in connection with failover
processing when communicating with the management sys-
tem 16. Client software on the management system 16 may be
used in connection with performing data storage system man-
agement by issuing commands to the data storage system 12
and/or receiving responses from the data storage system 12
over connection 2. In one embodiment, the management sys-
tem 16 may be a laptop or desk top computer system.

The particular data storage system as described in this
embodiment, or a particular device thereof, such as a disk,
should not be construed as a limitation. Other types of com-
mercially available data storage systems, as well as proces-
sors and hardware controlling access to these particular
devices, may also be included in an embodiment.

Referring to FIG. 2, shown is an example of an embodi-
ment of the data storage system 12 that may be included in the
system 10 of FIG. 1. Included in the data storage system 12 of
FIG. 2 are one or more data storage systems 20a-207 as may
be manufactured by one or more different vendors. Each of
the data storage systems 20a-20z may be a data storage array
inter-connected (not shown) to other data storage array(s).
Additionally, as noted above, the data storage systems may
also be connected to the host systems through any one or more
communication connections 31. In this example as described
in more detail in following paragraphs, reference is made to



US 9,244,632 B1

7

the more detailed view of element 20a. It should be noted that
a similar more detailed description may also apply to any one
or more of the other elements, such as 20z, but have been
omitted for simplicity of explanation.

Each of the data storage systems, such as 20a, may include
aplurality of storage devices such as disk devices or volumes
included in an arrangement 24 consisting of n rows of disks or
more generally, data storage devices, 24a-24n. In this
arrangement, each row of disks may be connected to a disk
adapter (“DA”) or director responsible for the backend man-
agement of operations to and from a portion of the disks 24. In
the system 20a, a single DA, such as 23a, may be responsible
for the management of a row of disks, such as row 24a. In a
data storage system such as by EMC Corporation, a backend
DA may also be referred to as a disk controller. The DA may
performed operations such as reading data from, and writing
data to, the physical devices which are serviced by the DA.

The system 20a may also include one or more storage
processors 27. Each of the storage processors 27 may be a
CPU and an embodiment may include any number of such
processors. For example, the VNX® data storage system by
EMC Corporation includes two storage processors. The sys-
tem 20a may also include one or more host adapters (“HAs”)
ordirectors 21a-21#n. Each of the HAs may be used to manage
communications and data operations between one or more
host systems and the global memory. In an embodiment, the
HA may be a Fibre Channel Adapter (FA) or other adapter
which facilitates host communication. The HA communi-
cates with a component of the host such as a host bus adapter
(HBA). Generally, directors may also be characterized as the
different adapters, such as HAs (including FAs), DAs RAs
and the like, as described herein. Components of the data
storage system, such as an HA, which may communicate with
ahost may also bereferred to as front end components. Within
the data storage system, components, which may be charac-
terized as backend components, communicate with a front
end component. An example of abackend componentisa DA.
In connection with data storage systems such as by EMC
Corporation, various types of directors or adapters may be
implemented as a processor, or, more generally, a component
that includes the processor. Examples of directors are disk
adapters (DAs), host adapters (HAs), and the like.

One or more internal logical communication paths may
exist between the DAs, the RAs, the HAs, and the memory 26.
An embodiment, for example, may use one or more internal
busses and/or communication modules. For example, the glo-
bal memory portion 2556 may be used to facilitate data trans-
fers and other communications between the DAs, HAs and
RAs in a data storage system. In one embodiment, the DAs
23a-23n may perform data operations using a cache that may
be included in the global memory 255, for example, in com-
munications with other disk adapters or directors, and other
components of the system 20a. The other portion 25a is that
portion of memory that may be used in connection with other
designations that may vary in accordance with each embodi-
ment.

Also shown in the storage system 20qa is an RA or remote
adapter 40. The RA may be hardware including a processor
used to facilitate communication between data storage sys-
tems, such as between two of the same or different types of
data storage systems.

Asnoted above, a data storage system may include two SPs
(also referred to as main processors or storage system proces-
sors A and B) although a data storage system and techniques
herein may be used in an embodiment in which the data
storage system includes more than two storage processors as
mentioned above.

10

15

20

25

30

35

40

45

50

55

60

65

8

The two SPs 27 may control the operation of the data
storage system. The processors may be configured to process
requests as may be received from the hosts, other data storage
systems, management system, and other components con-
nected thereto. Each of the SPs may process received requests
and operate independently and concurrently with respect to
the other processor. With respect to data storage management
requests, operations, and the like, as may be received from a
client, such as the management system 16 of FIG. 1 in con-
nection with the techniques herein, the client may interact
with a designated one of the two SPs. Upon the occurrence of
failure of one the SPs, the other remaining SP may handle all
processing typically performed by both SPs.

1/O operations performed in a data storage system may
include I/O operations which are received by the data storage
system from an external client, such as a host. Depending on
the data storage configuration, the single host 1/O operation,
such as for a write operation, may result in more than one
write operation to one or more physical drives on the data
storage system. For example, if the host write is directed to a
logical device, such as a LUN, having storage provisioned
from a RAID group having a RAID-1 mirroring configuration
with two physical drives, then a single front end or host I/O to
the LUN results in two back-end physical device writes to
each of the two mirrored physical devices of the storage
system comprising the RAID group.

With reference to FIG. 3, shown is an example 100 illus-
trating components of a system that may be used in an
embodiment in accordance with techniques herein. The
example 100 includes a simplified view of components of a
system as described above. The example 100 includes a host
110 with an HBA 112. The host 110 communicates with data
storage system 120 over connection 114. Connection 114
may be, for example, a network connection between the HBA
112 and a front end adapter 122 of the data storage system
120. As described above, a front end adapter 122 may be, for
example, an FA. The data storage system 120 also includes a
cache 124, a DA or storage controller 126 and one or more
physical storage devices 128 (e.g., rotating disks or solid state
devices (SSDs) such as a flash drive). The host 110 may issue
an I/O operation to the data storage system over connection
114. For example, the host may issue a write operation to
write data to a portion of storage device 128. In one embodi-
ment, the data of the write operation may first be stored in
cache 124 and then destaged at a later point in time by DA 126
to the physical storage device 128. The foregoing host write
operation is an example of an I/O operation of the type
described above issued by the client. The single client 1/O
operation may result in actually writing data to one or more
storage devices depending on how the device to which the /O
is directed is configured. When performing a read I/O opera-
tion received by the front end adapter 122, processing may
first determine whether the data requested is already in cache
124 (thereby resulting in a cache hit or read hit). If the
requested read data is in cache 124, the data is retrieved from
cache 124 and returned to the host 110. Thus, a read resulting
in a cache hit may be serviced without having to access the
physical storage device 128 for the data. If the requested data
is not in cache 124, the data is retrieved by the DA 126 from
the storage device 128, stored in cache 124, and then returned
by the front end adapter 122 to the host 110.

As described in more detail in following paragraphs and
figures and with reference to FIG. 2, each of the SPs 27 may
have its own instance of a data model, such as a object model,
that represents various logical and physical aspects of the data
storage configuration. The data model may include objects
representing physical and logical entities in the data storage



US 9,244,632 B1

9

system. For example, objects may exist in the model repre-
senting the data storage system configuration whereby the
objects may represent physical entities such as the physical
drives (PDs) and logical entities such as a RAID Group, a
LUN, and the like. Each PD may have a corresponding PDO
(physical drive object). Furthermore, associated with each
PDO may be a PVO (provision drive object) which is used in
connection with representing and handling aspects of storage
provisioning and other operations with respect the underlying
PDO and PD. For example, a PVO may be used to represent
aspects of provisioned physical storage of a physical drive (as
represented by its PDO associated with the PVO) such as for
RAID groups (e.g. indicating that the PD is a member of a
particular RAID group). For example, the PVO may be used
in connection with coordinating performing a firmware
update of'a PD associated with the PVO. In one embodiment,
it should be noted that if there is no PVD associated with aPD,
the PD may not have yet been provisioned and configured into
other logical entities, such as into RAID groups, LUNs, and
the like, for use in storing client data.

As known in the art, an object may have data fields corre-
sponding to attributes describing the object and associated
procedures or routines known as methods. A method may be
invoked to perform an action or operation on an object.
Objects may be instances of defined object classes. Objects
and associated methods may be written using any suitable
programming language such as, for example, C++ and Java.

Referring to FIG. 4, shown is an example of a graph that
may be used in an embodiment in accordance with techniques
herein to represent the data model as may be maintained on
each SP. The example 250 includes a graph with nodes and
edges between the nodes. The graph in this example forms a
tree having a root node 252 at a first level, nodes 254a-254¢ at
a second level, nodes 256a-2565b at a third level, nodes 208a-
258¢ at a fourth level and leaf nodes 2604-260e at a fifth level.
The graph may be a representation of logical and/or physical
components in the data storage system with the root node 252
corresponding to an aggregator or external interface node for
the data storage system, or more specifically, an interface
node to the data storage system. Each node in the graph other
than the root node represents an object associated with a
corresponding physical or logical entity in the data storage
system. The leaf nodes at the fifth level correspond to objects
associated with physical storage devices, such as rotating disk
drives (e.g., Fibre channel drives, SATA drives) or SSDs
(solid state storage devices such as comprising flash-based
memory). Nodes at levels other than the first level (root node)
and bottom most level (level 5 including leaf nodes 260a-
260¢) may correspond to, for example, RAID groups, drives
or members of a RAID group, LUNS, and the like. In this
example, nodes 254a-254c¢ correspond, respectively, to
objects associated with LUNs 1-3, nodes 256a-2565 corre-
spond, respectively, to objects associated with RAID
GROUPS 1 and 2, nodes 258a and 2584 correspond to PVOs
associated with RAID drives or members of RAID GROUP1,
nodes 258¢-258e¢ correspond to PVOs associated with RAID
drives or members of RAID GROUP 2, and nodes 260a-260¢
correspond to physical device objects (PDOs) associated with
physical storage devices (PDs) 270a-e. Each PDO may be
associated with a single PD, and each PDO may be associated
with a single PVO. To further illustrate, object 256a may
represent a mirroring configuration object such as for a
RAID-1 configuration whereby PD 1 represented by PDO
260a and PD2 represented by PDO 2605 are mirrors of each
other.

A path in the graph may correspond to an I/O path over
which an I/O operation may be forwarded to a physical device

10

15

20

25

30

35

40

45

50

55

60

65

10

(PD) for processing. For example, a host /O operation
directed to LUN 3 to write data may result in writing user data
and/or parity information to a portion of PD5 forwarded along
the path represented by nodes 252, 254¢, 2565, 258¢, 260e.
The foregoing may be a complete path from the root to a leaf
node. An I/O operation may be forwarded along a path from
a first node which is at a level M in the graph, M>1 (e.g., the
root node is at level 1), to one of its descendant nodes in the
graph, such as one of the leaf nodes or other nodes at a
level>M in the graph.

Also included in the example 250 are dashed lines denoted
as A and B. Portions of the graph above line A may represent
those entities of the data storage system which are visible to
the host or other external client. For example, the host may
send I/O requests directed to one or more LUNs. The host
may not have any knowledge regarding underlying RAID
groups that may be included in an embodiment. Nodes below
line A may correspond to entities known or exposed within
the data storage system, but not to the host. Dashed line B
represents the partitioning of the graph into nodes corre-
sponding to physical and logical entities. Nodes above line B
(other than the root) may correspond to logical entities (e.g.,
LUNs, RAID groups, RAID drives or members) of the data
storage system. Nodes below line B may correspond to physi-
cal entities, such as physical storage devices, of the data
storage system.

As described herein and illustrated in connection with FIG.
4, an embodiment may utilize a topology of objects to repre-
sent a current configuration and state of the data storage
system. An [/O operation may be represented by a /O path in
the object topology such as illustrated in FIG. 4 whereby the
1/O operation processing may be characterized as traversing
the 1/O path in the object topology when servicing the I/O
operation request. Additionally there may be services, such as
a library of service routines, invoked at different levels in the
object topology such as by methods of the objects in the path.

Referring to FIG. 5, shown is an example 300 illustrating a
topology of objects and additionally a services library 320 in
an embodiment in accordance with techniques herein. The
example 300 includes a generic representation of an object
topology 310 that may represent the configuration and state of
the data storage system at a point in time. The topology 310 is
a more generalized or generic representation of objects from
that such as illustrated in more detail in FIG. 4. Element 320
may represent a services library of routines that may be
invoked at different levels in a particular runtime object stack
for an I/O request. The example 300 includes flow arrows
312a-f generally representing possible runtime execution
flow up between various objects in the topology when servic-
ing I/O requests. Additionally, flow arrows 314a-c represent
the possible runtime execution flow between the services
library 320 and various objects at different levels in the topol-
ogy 310. It should be noted that arrow 3145 generally repre-
sents possible runtime execution flow between any of nodes
B,C at level 2 in the object topology and arrow 314¢ generally
represents the possible runtime execution flow between any
of the leaf nodes D, E, F, G, and H at level 3 in the object
topology.

Thus, in servicing an 1/O operation, code may be executed
at various levels in the runtime object stack represented by a
particular path in the object topology 310. Additionally, a
routine of the service library 320 may be invoked by objects,
or more specifically a method thereof, at various levels 0f310
as illustrated by any of 314a-c.

As noted above, an embodiment may utilize an object
topology to represent the physical and logical storage entities.
As described in following paragraphs, such an object topol-



US 9,244,632 B1

11

ogy may be used in connection with storage entities used
privately or internally by the data storage system, and also in
connection with storage entities storing user data.

Each object may include configuration information and
state information characterizing, respectively, the configura-
tion and state of the data storage system physical or logical
entity represented by the object. Such configuration and state
information may be included in the object, for example, as
attributes of the object. Thus, the particular configuration and
state information may vary with the particular type or class of
object described. For example, consider a RAID group (RG)
object. The configuration information for the RG object may
specify information describing the RG configuration such as,
for example, the number of PDs, the RAID protection level
(e.g., RAID-1 which is mirroring with no parity or striping,
RAID-5 which provides block level striping and distributed
parity information, and possibly other supported RAID lev-
els), and the like. The RG state information may indicate the
state of the RAID group, for example, whether the RAID
group is currently in the process of an internal RG rebuild and
if so, the PD(s) being rebuilt.

The configuration and state information for the objects
may be specified as part of initializing or instantiating the
objects. In an embodiment in accordance with techniques
herein, there may be a first set of system objects and an
associated topology describing storage entities used inter-
nally by the storage system. A first set of configuration and
state information may be used to initialize or instantiate
objects of the first set for storage entities (e.g., LUNs, RGs,
and the like) used internally or by the system for storing
system private data.

There may also be a second set of system objects and
associated topology describing storage entities used in con-
nection with client storage such as for LUNs, RGs, and the
like, for storing user data. The objects and topology in the
second set may be exported or exposed to clients such as
through data storage system management software. Addition-
ally, objects and topology of the second set may be created,
for example, in response to a data storage system manager
configuring PDs into a desired RAID group configuration,
provisioning storage fora LUN from a RAID group foruse by
ahost or host-side application, adding new PDs to the system,
and the like. A second set of configuration and state informa-
tion may be used to initialize or instantiate objects of the
second set for client or user provisioned storage.

The foregoing first set of objects may be characterized as
internal or private in that they may not be published or
exposed such as through management software. The private
objects may be used internally by code executing on the data
storage system to describe storage used by the system for
storing information about user or client objects (of the second
set) describing client storage. For example, an RG object, a
LUN object, and associated one or more PD objects in the first
set may describe storage provisioned for storing data (e.g.,
configuration and state information) regarding objects of the
second set. Thus, objects of the first set may describe storage
entities used to store the second set of configuration and state
information for objects of the second set.

Additionally, the first set of configuration and state infor-
mation used to initialize or instantiate private or system
objects of the first set may also be stored on yet another third
set of private or system storage entities (e.g. RGs, LUNs, and
PDs) whereby such first set of configuration and state infor-
mation needs to be obtained therefrom as an initial step prior
to subsequently initializing or instantiating the first set of
objects in order to perform such initialization of the first set of
objects. More specifically, as part of booting the data storage

10

15

20

25

30

35

40

45

50

55

60

12

system, the following describes an ordering of steps may be
performed as part of the boot sequence:

1) read first set of configuration and state information from
the third set of private or system storage entities (e.g., RGs,
LUNSs, PDs);

2) instantiate private or system objects of the first set using
the first set of configuration and state information whereby
objects of the first set represent private or system storage
entities (e.g., such as RGs, LUNs) containing the second set
of configuration and state information for client-based
objects describing client or user provisioned storage;

3) read second set of configuration and state information
from first set of private or system storage entities; and

4) instantiate user or client objects of the second set using
the second set of configuration and state information whereby
objects of the second set represent user or client storage
entities such as storage provisioned for storing user or client
(e.g., host) data.

The user or client objects may be exposed or exported such
as for use in connection with data storage system manage-
ment software to represent an existing configuration of the
data storage system for user or client provisioned storage.

Such storage entities (e.g. RGs, LUNs, PDs) of the third set
used to store the first set of configuration and state informa-
tion may also be configured in a RG thereby providing the
first set of configuration and state information with all the
benefits and features of RAID configured physical storage
such as may be used in connection with client provisioned
storage. As known in the art, such benefits and features may
vary with the particular RAID protection level and configu-
ration and may include, for example, internal RAID group
rebuilding and protection, various data storage system ser-
vices, and the like.

Asused herein, private objects or system objects (e.g., such
as of the first set noted above) may refer to those objects
created, such as at boot time, in order to subsequently read
(from system or private storage entities) the second set of
configuration and state information for user or client objects
representing associated client storage entities. The data stor-
age system logical and physical entities (e.g., RGs, LUNSs,
PDs) represented by such private or system objects may be
referred to as private or system storage entities. Additionally,
the term private or system entity is also used herein to refer to
the physical and logical storage entities of the third set also
used privately by the system for storing configuration and
state information for the first set of objects describing private
or system storage entities of the first set.

Client objects or user objects (e.g., such as of the second set
noted above) may refer to those objects, such as of the second
set, representing physical and logical storage entities for user
or client data. The data storage system logical and physical
entities represented by such user or client objects may be
referred to as user or client entities.

Referring to FIG. 6, shown is an example illustrating stor-
age entities and associated objects that may be used in an
embodiment in accordance with techniques herein. The
example 400 includes system or private storage entities 410
and user or client storage entities 420. Consistent with
description above and elsewhere herein, the system or private
storage entities 410 may include the various physical and
logical storage entities, such as RGs, LUNs and PDs, used to
store data that is used privately or internally within the data
storage system. Element 402 may represent the one or more
private or system storage entities used for storing the first set
of configuration and state information for system or private
objects 402a. Thus, element 402 may represent the private or
system storage entities of the third set described above. Ele-



US 9,244,632 B1

13

ment 404 may represent the one or more private or system
storage entities used for storing the second set of configura-
tion and state information for user or client objects 404a.
Thus, element 404 may represent the private or system stor-
age entities of the first set described above. Element 406 may
represent the one or more user or client storage entities for
storing the client or user data 406. Thus element 406 may
represent the user storage entities second set described above.

As described in more detail elsewhere herein, when boot-
ing the data storage system a sequence of steps may be per-
formed. As a first step S1, the first set of configuration and
state information for system or private objects 402a may be
read from private storage entities 402. As a second step S2, the
first set of configuration and state information 402a may be
used to instantiate or initialize system or private objects for
the system or private storage entities 404 containing the con-
figuration and state information for user or client objects
404a. As a third step S3, the second set of configuration and
state information for user or client objects 404a may be read
from system or private storage entities 404. As a fourth step
S4, the second set of configuration and state information may
be used to initialize or instantiate the user or client objects
representing the user or client data storage entities 406 con-
taining the user data 406a.

In connection with the above-mentioned sequence of steps,
there exists a bootstrap problem in connection with reading in
the first set of configuration and state information for the
system or private objects 4024 in step S1. At system boot time
in step S1, the existing software infrastructure used to imple-
ment the runtime I/O stack and object model as illustrated in
FIGS. 4 and 5 is not yet completely loaded and available for
use. Thus, although the first set of information 402¢ may be
stored on PDs configured into RGs and LUNS, all the objects,
such as the RG and LUN objects, representing such storage
entities have not yet been instantiated.

As described in more detail in following paragraphs, spe-
cial processing may be performed to perform this initial read
of the first set of configuration and state information 402a.
Such special processing may include interfacing with code
(e.g., RAID library) at the RAID Group (RG) level in the
runtime [/O stack without using an RG object since no such
RG object exists. For example, with reference back to FIG. 4,
at this point in the boot sequence, it may be that only objects
at the lower PD levels (e.g., objects 258a-¢ and 2604a-¢) exist
for private or system PDs represented by 402. Thus, tech-
niques described in following paragraphs “plug into” or
“hook into” the runtime 1/O stack above this PD level at the
RG level and interface directly with a RAID library. Process-
ing performed by the RAID library may be generally repre-
sented as a services library such as illustrated by 320 of FIG.
5.

In the typical 1/O stack as described in FIGS. 4 and 5, a
method of an RG object such as 2564 or 2565 would interface
with the RAID library and lower level PD objects (e.g., 258a-
e, 260a-¢). Alternatively, techniques described in following
paragraphs provide for using a special routine or body of code
to directly interface with the RAID library and the lower level
PD objects at the point S1 in the boot sequence thereby having
the special routine or body of code being used in place of an
RG object and its associated methods.

Referring to FIG. 6 A, shown is an example 430 illustrating
use of techniques herein in connection with steps S1-S4 of
FIG. 6. Element 441a illustrates the objects and components
that may be used in performing step S1. PDs 4424-b may be
PDs storing the first set of configuration and state information
used to initialize system/private objects. Objects 440a-b may
exist in the system at this point in the boot sequence but no

30

35

40

45

60

14

higher level objects, such as PVOs, LUNs, RGS, and the like,
may exist and be suitably initialized for use in performing I/O
operations. Element 450 represents the special processing
code that interfaces directly with the RAID library 452 and
lower level objects 440a-b to read the first set of configuration
and state information. Thus, the code 450 interfaces with 452,
440q and 4405 rather than a RG object since such a RG object
is not yet in existence at this early processing point in the boot
sequence. Elements 440a-b and 442a-b may represent private
or system objects and entities of the third set noted above
(e.g., represented by element 402 of FIG. 6). It should be
noted that PVOs corresponding to PDOs 4384-b may be in
existence at point S1 in the boot sequence but such PVOs may
not be completely initialized at this point S1. Thus, the special
processing code 450 may interface directly with 440a-b or
otherwise, although not illustrated, interface with partially
initialized PVO objects corresponding to PDOs 438a-b pro-
vided that processing performed in an embodiment does not
require use of any PVO object information other than as
provided by the partially initialized PVOs.

It should also be noted that although 442a-d may represent
different physical drives, 442a and 442¢ may actually refer to
the same first physical drive but at different offsets, and 4425
and 442 may refer to the same second physical drive but at
different offsets. For example, assume 4424-b are configured
into a RAID-1 mirroring configuration and that 442c¢-d are
also configured into a RAID-1 mirroring configuration. In
this case, data stored on PD A 4424 may be mirrored on PD B
442p and similarly data stored on PD C 442¢ may be mirrored
on PD D 4424. Elements 442a-b may represent two PDs
using one set of offsets on the drives and elements 442¢-d may
represent the same two PDs using a different set of offsets on
the drives.

Once the first set of configuration and state information is
read in step S1, the system or private objects of the first set
representing the private storage entities 404 may be instanti-
ated in step S2. The system or private objects of the first set
instantiated may include objects representing private storage
entities such as RGs, and LUNs, PDs, and the like, as
described in connection with FIGS. 4 and 5, which can now
be used with the runtime I/O stack and software infrastructure
as also described above. To further illustrate subsequent pro-
cessing following step S1 represented by 441a, element 4415
includes the objects and components that may exist in the
system after completing step S2. In step S2, system or private
objects 434a-b, 436, 438¢-d and 440c-d may be instantiated.
The second set of configuration and state information for
user/client objects 404a may be stored on PDs 442¢-d.

Thus, step S3 which reads the second set of configuration
and state information 4044 may be performed through issuing
a read request to a private LUN included in 404 and process-
ing such read request using the runtime 1/O stack as described
in connection with FIGS. 4 and 5. In this manner, reading the
second set of configuration and state information 404a may
be performed using the same runtime I/O stack, interfaces,
code, and the like, as when processing client read requests.
For example, with reference to F1G. 6 A 4415, the read request
in step S3 may be issued as an I/O operation request 432 to
read the second set of configuration and state information
from a private LUN, such as LUN A 434q, having data stored
on PD 442¢ using the following runtime I/O stack of objects
434a, 436, 438¢, 440c.

In the fourth step S4, the second set of configuration and
state information is used to initialize the client or user objects
for client or user storage entities 406 containing user or client
data 406a. Subsequently, the client or user objects may be
exported. Also, user or client /O requests may be processed



US 9,244,632 B1

15

using the runtime I/O stack of objects as described herein
(e.g., FIGS. 4 and 5). Instantiating client or user objects in
step S4 may include creation of another topology of user or
client objects such as described in FIGS. 4 and 5. The user or
client object topology created may include RG objects, LUN
objects, and the like, as illustrated in FIGS. 4 and 5 and also
in 4415 of FIG. 6 A. In this manner, the user or client I/Os may
be processed using an object topology that includes objects
representing LUNs, RGs, and the like, whereby the RG
objects (or methods thereof) interface with the RAID library
452. Thus, the same body of code denoted by RAID library
452 may be used during system boot and also during normal
or typical I/O processing of client I/Os.

In accordance with techniques herein such as illustrated by
441a, the first set of configuration and state information may
be stored at a predetermined or known location on a prede-
termined set of PDs 442a-b having a predetermined RG con-
figuration from which storage is provisioned for one or more
LUNss for private or system use. For example, particular PDs
of the data storage system may be configured into a private
RG having a RAID-1 configuration with two LUNs 442a-b
for private or system use in storing the first set of configura-
tion and state information 402a.

Techniques herein provide for having the code 450 perform
aRAID library API call to the RAID library 452 in connection
with reading the first set of configuration and state informa-
tion 402a from the predetermined location. Since the location
of' the first set of configuration and state information and the
RG configuration may be characterized as known, fixed or
predetermined, an embodiment may create and initialize
appropriate parameters or structures for use with the API call
whereby such parameters or structures specify the known
location in the private RG to read the first set of configuration
and state information. As illustrated in 441a of FIG. 6A, the
RAID library 452 and associated API may be used in connec-
tion with the special processing code 450 to read in step S1 the
first set of configuration and state information. As also illus-
trated in 4416 of FIG. 6 A, the same RAID library 452 may be
used in connection with reading the second set of configura-
tion and state information in step S3 along with using the
LUN and RG objects of the runtime I/O stack of objects
whereby a method of the RG object 436 may perform the API
call to the RAID library 452 (rather than the code 450 as in
441a).

The special processing code 450 may create and appropri-
ately initialize the necessary RAID library API call param-
eters typically performed using structures existing as part of a
RG object such as 436 or otherwise using information typi-
cally provided from higher level objects of the runtime 1/O
stack of objects (e.g., with the runtime I/O stack of objects, a
method of the RG object may receive one or more parameters
from a method of a LUN object whereby the one or more
parameters from the LUN object specify details of the /O
operation).

In connection with runtime processing flow with the com-
ponents of 4414, special processing code 450 may first obtain
information from the PDO objects 440a-b such as regarding
the state of the particular PDs used to store the first configu-
ration and state information. Secondly, the special processing
code 450 may use such information obtained from the PDO
objects 440a-b along with other information available to 450
regarding the known location of where the first configuration
and state information is stored to initialize the appropriate
structures or other parameters for the API call to the RAID
library 452. As described in more detail below, the API call
from 450 to the RAID library 452 may specify a RAID
geometry which is information regarding the RAID group

10

15

20

25

30

35

40

45

50

55

60

65

16

configuration of the known location where the first configu-
ration information is stored. The RAID geometry may, for
example, identify objects, such as PDOs 440a-b correspond-
ing to the particular PDs 442a-b of the RAID group including
the first set of configuration and state information. The API
call may also specify an I/O structure as a parameter whereby
the 1/O structure specifies an 1/O operation request to read
data from the known location in the RAID group at which the
desired first set of configuration and state information is
located. Thirdly, the RAID library 452 may then communi-
cate with a method of one of the PDOs 440a-b to read the
requested first set of configuration and state information. It
should be noted that the code of the RAID library 452 may use
the information provided in the API call—the RAID geom-
etry and the known location—to determine the physical
device and location on the physical device of the data
requested. In other words, code of the RAID library may
perform processing to map the specified known location
which may be expressed in terms of a RAID group logical
location or address to the physical device location which may
vary depending on the particular RAID group configuration.
This is described in more detail below. Fourthly, the RAID
API call may return the requested read data, the first configu-
ration and state information, to the code 450.

In connection with issuing the read request using the I/O
runtime stack of objects in 4415, the RAID API call between
RG object 436 and the RAID library 452 may be performed
by a method of the RG object 436. Parameters of the call may
include parameters as described above when the API call is
issued to the RAID library 452 from 450. As noted above, the
parameters may include the RAID group geometry (of the
RAID group in which the first configuration and state infor-
mation is stored) and the I/O operation read request (specify-
ing to read data from the known location of the first set of
configuration and state information). In connection with the
RAID library API call from the RG object 436, it should be
noted that the RAID geometry may exist as part of the instan-
tiated RG object 436 and the I/O operation read request may
be passed to the method of the RG object 436 down the I/O
stack of objects. For example, if the known location is on a
particular LUN, such as LUN A 434a, the /O request (read)
may represented by 432 which is then passed to a method of
the LUN object 434a. The I/O request may then be passed as
an input parameter to a method of the RG object 436. It should
be noted that the RAID geometry information in the API call
from 436 to 452 may identify PVOs 438¢-d rather than PDOs
440c¢-d for the particular PDs as described above in connec-
tion with the call from 450 to 452. The RAID API call from
436 to 452 may return the requested read data, the first set of
configuration and state information, to the requesting method
of436.

More generally, the same RAID library 452 (e.g., same
code portion or routine) may be used in connection with
reading the first set of configuration and state information as
illustrated in connection with 441a, reading the second set of
configuration and state information as illustrated in connec-
tion with 4415, and also when subsequently processing client
1/O requests using an 1/O runtime stack based on a client
object topology representing physical and logical storage
entities containing user data.

Referring to FIG. 7, shown is an example 500 illustrating
the structures or parameters that may be specified in the RAID
library API call to read the first set of configuration and state
information 402« in an embodiment in accordance with tech-
niques herein. The RAID library API call parameters may
include a first structure or first set of parameters describing



US 9,244,632 B1

17
the RAID group (RG) geometry 502 and a second structure
504 that is an I/O structure or set of parameters describing the
1/O operation requested.

With reference back to 441a of FIG. 6A, the special pro-
cessing code 450 may create and initialize the structures 502
and 504 when performing step S1. When performing step S3
as illustrated using the object topology 4415, the data of
structure 502 may be included as part of the RG object 436
and the data of structure 504 may be passed down to the
method of the RG object 436 (from which the API call to 452
is made) as an input parameter (e.g., such as from one or more
higher level objects such as LUN object 4344 in the runtime
1/0 object stack). Such data for 502 and 504 may be specified
in the RAID library API call performed by a method of RG
object 436.

Element 506 illustrates in further detail information that
may be specified for the RG geometry 502 describing aspects
of the RG configuration. Information of the RG geometry
may be generally characterized as static and will not change
with each 1/O operation performed. The RG geometry 506
may include: a list 506a identifying the particular PDs con-
figured into the RG, and the format or RAID protection level
(e.g., RAID-1, RAID-5, RAID 6) 5065, and possibly other
information 506¢ not illustrated that may vary with the par-
ticular RAID level. For example, RAID-5 provides for block
level striping with distributed parity. Other information 506¢
that may be specified for RAID-5 may identify information
regarding the striping such as the stripe element size and
stripe size. The stripe element is the amount of contiguous
data stored on a single disk of the stripe. Stripe elements may
be measured in 512 byte blocks or in kilobytes (KB). The
stripe element size may be, for example, 128 blocks, which is
64 KB) and stripe size. The stripe size is the amount of user
data in a RAID group stripe. This does not include drives used
for parity or mirroring. The stripe may be measured in KB and
may be calculated by multiplying the number of stripe disks
by the stripe element size. Element 506a may identify a list of
objects, such as PDOs or PVOs, corresponding to the PDs
included in the RAID group. Thus, the RAID geometry 502
may be characterized as initializing and specifying the RAID
group configuration containing the data being operated upon
(e.g., read or written) in connection with the I/O request
specified by the /O structure 504. With reference back to
FIG. 6A, the API call from 450 to 452 may identify the PDOs
440a-b representing the PDs 442a-b containing the desired
data (e.g., first set of configuration and state information) to
be read. With reference back to FIG. 6A, the API call from
436 to 452 may identify the PVOs 438¢-d representing the
PDs 442¢-d containing the desired data (e.g., second set of
configuration and state information) to be read.

Element 508 illustrates in further detail information that
may be specified in the I/O structure 504. The I/O structure
508 may identify: the type of I/O operation 508a (e.g., read or
write), a current state 5085 regarding the RG, and a target
location 508¢. To further illustrate information that may be
specified in fields 5085 and 508c¢, consider the following
example for a RG having a RAID-1 mirroring configuration.
In this case, the current state 5085 regarding the RG may, for
example, specify whether a particular PD of the RG includes
a current complete copy of data (and is therefore a valid
mirror and in a healthy or good state) or whether the PD may
be characterized as not including a complete copy of the data
(e.g., not a valid mirror or is in a degraded state). With refer-
ence back to FIG. 6A in connection with the call made to the
RAID library 452 from code 450, information specified in
5085 may be obtained, for example, by code 450 from the
PDOs 440q-b, prior to the API call by code 450 to 452. In

10

15

20

25

30

35

40

45

50

55

60

65

18
connection with the call made to the RAID library 452 from
a method of the RG object 436 as in FIG. 6A, information
specified in 5085 may be obtained, for example, by a method
of'the RG object 436 from a method of the PVOs 438¢-d, prior
to the API call from 436 to 452.

In connection with information that may be specified in the
target location 508c, reference is now made to FIG. 8. The
example 600 of FIG. 8 illustrates an RG having two LUNs—
LUN A 604 and LUN B 606—with storage provisioned from
the RG for private use in connection with storing the first set
of configuration and state information 402a. Element 602
may represent the RG logical address space 602 representing
the logical address space of capacity for storing data indepen-
dent of the underlying RG configuration. In other words, the
RG address space is an abstraction of the underlying physical
RG configuration whereby the RG logical address space rep-
resents the amount of data that can be stored in the RAID
group. The target location 508¢ may represent an offset or
logical block offset (LBA) in the RG logical address space
602. Forexample, LUN A 604 and LUN B 606 may be private
LUNs each having 100 blocks. The LUNs A and B 604, 606
may be configured for use in storing the first set of configu-
ration and state information 402a at a predetermined location
of LUN B, LBA 50 denoted by target location 610. Element
612 denotes the LUN-based LBAs and element 608 denotes
the RGLBAs. Line 605 may denote the partitioning of the RG
logical address space 602 among LUN A 604 and LUN B 605.
Line 607 may represent the mapping of the target location 610
as expressed using a LUN-based address or location of 612 to
a corresponding RG-based address or location 612. In this
case, the first set of configuration and state information 402a
may be stored on LUN B, LBA 50 which maps to a corre-
sponding RG location or LBA of 150. The target location field
508¢ of FIG. 7 represents the mapping of the LUN-based
location to a corresponding RG location in accordance with
the RG logical address space 602. In this example, the RG
LBA or location=150 may be specified in field 508c.

Although the example illustrates a particular target loca-
tion, LUN, and the like, such details are for illustration pur-
poses. More generally, the target location 610 may be any
known or predetermined location on any private or system
LUN.

In accordance with techniques herein, the target location
610 at which the first set of configuration and state informa-
tion 402a is known or predetermined. Additionally, the par-
ticular RG configuration of the RG including the target loca-
tion 610 is also known of predetermined. Thus, the special
processing code may create and initialize the structures 502
and 504 of FIG. 7 to include appropriate information for a
read request to read the first set of configuration and state
information 4024 from the known target location 610.

The code of the RAID library 452 may map the RG logical
address specified as the target location (provided as an input
in the API call) to a physical device and location of the
requested data for the I/O operation. As will be appreciated by
those skilled in the art, the physical device and location on the
physical device corresponding to the specified RG logical
address space may vary with the particular RAID group con-
figuration. For example, the number of PDs as well as the
location of the data on which PD will vary with whether the
RAID group is configuration as a RAID-1 group or a RAID-5
group. Thus, the mapping of the RG logical address to PD
location will also vary. It should be noted that in a RAID-1
group configuration whereby all data is mirrored and two
copies are stored on two different PDs of the RAID group, the
same data may be read from two PDs of the RAID group. In
this case, code of the RAID library 452 may select one of the



US 9,244,632 B1

19

PDs from which to read requested data. For data that is written
to aRAID-1 group, code of the RAID library 452 may handle
performing two writes to both PDs. In a similar manner, and
more generally, code of the RAID library 452 may handle
obtaining any requested read data from an appropriate PD
based on the RAID group configuration and also writing the
one or more copies of the user data, along with any necessary
parity data, to the appropriate PDs based on the RAID group
configuration.

It should be noted that the foregoing describes an API call
to the RAID library 452 whereby the parameters of the
example 500 of FIG. 7 may be included in a single API call.
More generally, the processing performed as described above
with the single API call may also be performed by multiple
API calls to the RAID library 452 depending on the particular
implementation. For example, an embodiment may perform a
first API call including the RAID geometry 502 to initialize
the RAID group. Subsequently, one or more /O operations
may be performed in which a separate API call is made to the
RAID library 452 for each I/O operation and include an /O
structure 504 for the particular I/O operation requested. As
will be appreciated by those skilled in the art, the foregoing as
well as other variations may exist in connection with embodi-
ments in accordance with techniques herein.

The foregoing describes techniques providing the ability to
use a single set of code, the RAID library 452, during both
system boot and also during normal typical 1/O processing
such as for processing host, or more generally client, /O
requests. This allows an embodiment to leverage RAID fea-
tures and benefits whereby the configuration and state infor-
mation used by the system (e.g., for both the first and second
sets of configuration information 402a, 404a) is provided
with the same RAID protection, benefits and advantages (e.g.,
rebuilding, rebuild logging, etc.) as provided for storing user
data. At boot time, the RAID library is used to access the first
set of configuration and state information in order to boot-
strap the system by creating system or private objects. Such
boot time use of the RAID library is performed without use of
higher level LUN and RG objects and thus without the typical
runtime I/O object stack. Subsequent to boot time such as
when processing host I/O operations, the same RAID library
may be used with the runtime I/O object stack including
objects for LUNs, RGs, and the like.

Referring to FIG. 9, shown is a flowchart of processing
steps that may be performed in an embodiment in accordance
with techniques herein. The flowchart 700 summarizes pro-
cessing as described above. At step 702, the first set of con-
figuration and state information for system/private storage
objects is read using the RAID library. At step 704, objects
representing system/private storage entities are instantiated
whereby such entities contain the second set of configuration
and state information for user/client storage objects. The sys-
tem/private storage objects instantiated may be included in a
system object topology (e.g., 4415 of FIG. 6 A) that interfaces
with (e.g., performs calls to) the RAID library for I/O pro-
cessing. At step 706, the second set of configuration and state
information for user/client objects is read. The read is per-
formed using the RAID library and an /O runtime stack
based on the system object topology including system/private
objects instantiated in step 704. At step 708, user/client
objects representing user/client storage entities are instanti-
ated and then exported. The user/client storage entities con-
tain user/client data. The user/client objects may be included
in a client/user object topology that interfaces with (e.g.,
performs calls to) the RAID library for I/O processing. At step
710, user/client I/Os are processed using the RAID library
and an /O runtime stack based on the user/client object

35

40

45

20

topology including objects instantiated in step 708. It should
be noted that steps 702-708 may be performed as part of
processing when booting the data storage system. Step 710
may be performed in an ongoing manner subsequent to boot
time when processing received 1/O requests, such as from
hosts or other clients having data stored on the data storage
system.

An embodiment may implement the techniques herein
using code executed by a processor. For example, an embodi-
ment may implement the techniques herein using code which
is executed by a processor of the data storage system. As will
be appreciated by those skilled in the art, the code may be
stored on the data storage system on a computer-readable
medium having any one of a variety of different forms includ-
ing volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules or other data. Computer-read-
able media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, (DVD) or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic stor-
age devices, or any other medium which can be used to store
the desired information and which can accessed by a proces-
SOf.

While the invention has been disclosed in connection with
preferred embodiments shown and described in detail, their
modifications and improvements thereon will become readily
apparent to those skilled in the art. Accordingly, the spirit and
scope of the present invention should be limited only by the
following claims.

What is claimed is:

1. A method for booting a data storage system comprising:

reading a first set of configuration and state information
from a first set of one or more storage devices, said first
set of one or more storage devices being included in a
first redundant array of independent disks (RAID)
group, wherein said reading the first set of configuration
and state information includes performing a first set of
one or more calls to a first code portion with a first set of
one or more parameters including information describ-
ing the first RAID group and a first target location of the
first set of configuration and state information;

instantiating a first set of system objects using the first set
of configuration and state information, the first set of
system objects representing physical and logical storage
entities including a second set of configuration and state
information whereby the first set of system objects are
included in a system object topology;

reading, using an [/O runtime stack based on the system
object topology, the second set of configuration and state
information from a second set of one or more storage
devices included in a second RAID group, wherein said
reading the second set of configuration and state infor-
mation includes performing a second set of one or more
calls to the first code portion with a second set of one or
more parameters including information describing the
second RAID group and a second target location of the
second set of configuration and state information; and

instantiating a second set of client objects using the second
set of configuration and state information, the second set
of client objects representing physical and logical enti-
ties including client data stored on a third set of one or
more storage devices included in a third RAID group,
wherein the second set of client objects are included in a
client object topology.



US 9,244,632 B1

21

2. The method of claim 1, wherein said reading the first set
of configuration and state information is performed using a
second code portion that issues said first set of one or more
calls to the first code portion, wherein the second code portion
creates and initializes a first structure included as a first
parameter of the first set of parameters.

3. The method of claim 2, wherein the first structure
describes a RAID geometry of the first RAID group.

4. The method of claim 3, wherein the first structure
includes a list identifying the first set of one or more storage
devices as being included in the first RAID group, and a
RAID protection level of the first RAID group.

5. The method of claim 2, wherein the second code portion
creates and initializes a second structure included as a second
parameter of the first set of parameters.

6. The method of claim 5, wherein the second structure
describes a first read operation to read the first set of configu-
ration and state information from the first RAID group.

7. The method of claim 6, wherein the second structure
includes information that identifies an 1/O operation type of
read and identifies the first target location.

8. The method of claim 1, wherein said reading the second
set of configuration and state information includes a method
of a RAID group object in the system object topology per-
forming said second set of one or more calls to the first code
portion, wherein said RAID group object represents said sec-
ond RAID group in the system object topology.

9. The method of claim 8, wherein the RAID group object
includes a set of attributes describing the second RAID group,
wherein the second set of parameters are specified using the
set of attributes from the RAID group object, and wherein a
method of the RAID group object receives as one or more
input parameters a read I/O operation request to read the
second set of configuration and state information at the sec-
ond target location, said read I/O operation request being
received from one or more higher level objects in an object
hierarchy including the RAID group object.

10. The method of claim 9, wherein the second set of
parameters includes a first structure describing a RAID
geometry of the second RAID group.

11. The method of claim 10, wherein the first structure
includes a list identifying the second set of one or more
storage devices as being included in the second RAID group,
and a RAID protection level of the second RAID group.

12. The method of claim 1, further comprising:

receiving a first [/O operation from a client; and

processing the first /O operation using an /O runtime

stack based on the client object topology, wherein said
processing the first /O operation includes performing a
third set of one or more calls to the first code portion with
athird set of one or more parameters including informa-
tion describing the third RAID group and a third target
location identifying a location from which data is read or
alocation to which data is written in accordance with the
first I/O operation.

13. The method of claim 12, wherein said processing the
first /O operation includes a method of'a RAID group object
in the client object topology performing said third set of one
or more calls to the first code portion, wherein said RAID
group object represents said third RAID group in the client
object topology.

14. The method of claim 13, wherein the RAID group
object includes a set of attributes describing the third RAID
group, wherein the third set of parameters are specified using
the set of attributes from the RAID group object, and wherein
a method of the RAID group object receives as one or more
input parameters an 1/O operation request for the third I/O

10

15

20

25

30

35

40

50

55

60

65

22

operation, the input parameter identifying a type of the I/O
operation request as a read or a write operation and also
identifying the location from which data is read or to which
data is written in accordance with the type, and wherein the
1/O operation request is received from one or more higher
level objects in an object hierarchy including the RAID group
object.
15. The method of claim 14, wherein the third set of param-
eters includes a first structure describing a RAID geometry of
the third RAID group.
16. The method of claim 15, wherein the first structure
includes a list identifying the third set of one or more storage
devices as being included in the third RAID group, and a
RAID protection level of the third RAID group.
17. A non-transitory computer readable medium compris-
ing code stored thereon for booting a data storage system, the
computer readable medium comprising code for:
reading a first set of configuration and state information
from a first set of one or more storage devices, said first
set of one or more storage devices being included in a
first redundant array of independent disks (RAID)
group, wherein said reading the first set of configuration
and state information includes performing a first set of
one or more calls to a first code portion with a first set of
one or more parameters including information describ-
ing the first RAID group and a first target location of the
first set of configuration and state information;

instantiating a first set of system objects using the first set
of configuration and state information, the first set of
system objects representing physical and logical storage
entities including a second set of configuration and state
information whereby the first set of system objects are
included in a system object topology;
reading, using an [/O runtime stack based on the system
object topology, the second set of configuration and state
information from a second set of one or more storage
devices included in a second RAID group, wherein said
reading the second set of configuration and state infor-
mation includes performing a second set of one or more
calls to the first code portion with a second set of one or
more parameters including information describing the
second RAID group and a second target location of the
second set of configuration and state information; and

instantiating a second set of client objects using the second
set of configuration and state information, the second set
of client objects representing physical and logical enti-
ties including client data stored on a third set of one or
more storage devices included in a third RAID group,
wherein the second set of client objects are included in a
client object topology.

18. The non-transitory computer readable medium of claim
17, wherein said reading the first set of configuration and state
information is performed using a second code portion that
issues said first set of one or more calls to the first code
portion, wherein the second code portion creates and initial-
izes a first structure included as a first parameter of the first set
of parameters.

19. The non-transitory computer readable medium of claim
18, wherein the first structure describes a RAID geometry of
the first RAID group.

20. The non-transitory computer readable medium of claim
19, wherein the first structure includes a list identifying the
first set of one or more storage devices as being included in the
first RAID group, and a RAID protection level of the first
RAID group.



